Sunday 5 ${ }^{\text {th }}$ February, 2023

Problem Caesar Is Back

C header caesar.h
C++ header caesar.h

Your favourite emperor CAESAR is back! He gives you the following problem. He defines a 1-step transformation in the following way: a 1-step transformation transforms an 'a' into a ' b ', a ' b' into $a^{\prime} c$ ', ..., $a^{\prime} y$ ' into $a^{\prime} z$ ', and finally a ' z ' into an ' a '. Furthermore, for any non-negative integer k, he defines a k-step transformation as a 1 -step transformation applied k times. For example, a 3 -step transformation transforms an ' a ' into a 'd'. Note that a 0 -step transformation does nothing i.e. it transforms an ' a ' into an ' a ', a ' b ' into a ' b ', and so on.

CaEsAR provides you with two strings A and B, each of length n. These are both indexed from 0. Furthermore, he provides you with q intervals $[l, r]$ where $0 \leq l \leq r<n$. For each interval $[l, r]$, he wants you to find the number of pairs (x, y) such that $l \leq x \leq y \leq r$ and there exists a k such that, for all $x \leq i \leq y$, we have that B_{i} is the k-step transformation of A_{i}.

For example, if $n=3, A=\mathrm{aac}, B=\mathrm{bbc}, l=0$ and $r=2$ then the valid pairs are $(0,0),(0,1),(1,1)$ and $(2,2)$. For $(0,0),(0,1),(1,1)$ we take $k=1$, and for $(2,2)$ we take $k=0$.

Interaction Protocol

The contestant must implement two functions:

```
void init(int n, int q, char A[], char B[]);
long long query(int l, int r);
```

The function init will be called exactly once, at the beginning of the interaction. The function will be supplied with the values n and q and with the two strings, A and B. Then, the committee will call the function query q times. It will be supplied with the values l and r, representing a query. The contestant must return one integer, the answer for the interval $[l, r]$, according to the statement.

Attention! The contestant must not implement the main function, and must \#include the caesar.h header! Contestants are allowed to use global variables and other functions.

Restrictions

- $1 \leq n \leq 1000000$.
- $1 \leq q \leq 1000000$.
- A and B contain lowercase English letters only.

$\#$	Points	Restrictions
1	5	$A=$ aaa..,$B=\mathrm{bbb} \ldots$
2	9	A and B contain only ' a ' and ' n '
3	10	$n \leq 100, q \leq 1000$
4	15	$n \leq 1000, q \leq 300000$
5	30	$q \leq 100000$
6	31	No further restrictions

Examples

Input	Output
$\begin{aligned} & \text { init(3, 1, "aac", "bbc") } \\ & \text { query }(0,2) \end{aligned}$	4
```init(5, 3, "abcde", "bcdyz") query(1, 3) query(0, 2) query(4, 4)```	$\begin{aligned} & 4 \\ & 6 \\ & 1 \end{aligned}$
```init(20, 20, "aggccdaloaxgnakfivqd", "ckjdfgdnsczhpdmilxrh") query(2, 9) query(8, 10) query(2, 11) query(3, 4) query(9, 15) query(6, 12) query(8, 10) query(8, 10) query(2, 5) query(5, 14) query(8, 13) query(5, 11) query(0, 1) query(6, 14) query(0, 5) query(2, 2) query(0, 3) query(9, 14) query(3, 12) query(8, 11)```	11   4   14   2   8   8   4   4   5   12   7   9   2   10   7   1   4   7   14   5

Explanations

First example For the interval $[0,2]$ the valid pairs are $(0,0),(0,1),(1,1)$ and $(2,2)$. For the first three pairs we take $k=1$ which transforms the letters ' a ' into letters ' b '. For the last one we take $k=0$ which leaves the letter ' c ' as it is.

Second example For the interval $[1,3]$ we have the valid pairs $(1,1),(1,2)(2,2)$ and $(3,3)$. For $(1,1)$, $(1,2)$ and (2,2) we choose $k=1$ which transforms the letter ' b ' into ' c ' and the letter ' c ' into ' d ' respectively. For $(3,3)$ we choose $k=21$, because it transforms the letter ' d ' into ' y '. Therefore, the answer is 4 . For the interval $[0,2]$ every possible pair is valid. For all of them we choose $k=1$, which makes the letter ' a ' into ' b ', the letter ' b ' into ' c ' and the letter ' c ' into ' d ' respectively. Therefore, the answer is 6 . For the interval $[4,4]$ the only pair that satisfies the statement is $(4,4)$, for which we choose $k=21$, which transforms the letter ' e ' into ' z '. Therefore, the answer is 1 .

