

Problem Caesar Is Back

C header	caesar.h
C++ header	caesar.h

Your favourite emperor CAESAR is back! He gives you the following problem. He defines a 1-step transformation in the following way: a 1-step transformation transforms an 'a' into a 'b', a 'b' into a 'c', ..., a 'y' into a 'z', and finally a 'z' into an 'a'. Furthermore, for any non-negative integer k, he defines a k-step transformation as a 1-step transformation applied k times. For example, a 3-step transformation transforms an 'a' into a 'd'. Note that a 0-step transformation does nothing i.e. it transforms an 'a' into an 'a', a 'b' into a 'b', and so on.

CAESAR provides you with two strings A and B, each of length n. These are both **indexed from 0**. Furthermore, he provides you with q intervals [l, r] where $0 \le l \le r < n$. For each interval [l, r], he wants you to find the number of pairs (x, y) such that $l \le x \le y \le r$ and there exists a k such that, for all $x \le i \le y$, we have that B_i is the k-step transformation of A_i .

For example, if n = 3, A = aac, B = bbc, l = 0 and r = 2 then the valid pairs are (0, 0), (0, 1), (1, 1) and (2, 2). For (0, 0), (0, 1), (1, 1) we take k = 1, and for (2, 2) we take k = 0.

Interaction Protocol

The contestant must implement two functions:

```
void init(int n, int q, char A[], char B[]);
long long query(int l, int r);
```

The function **init** will be called **exactly once**, at the beginning of the interaction. The function will be supplied with the values n and q and with the two strings, A and B. Then, the committee will call the function **query** q times. It will be supplied with the values l and r, representing a query. The contestant must return one integer, the answer for the interval [l, r], according to the statement.

Attention! The contestant must not implement the main function, and must #include the caesar.h header! Contestants are allowed to use global variables and other functions.

Restrictions

- $1 \le n \le 1\,000\,000.$
- $1 \le q \le 1\,000\,000.$
- A and B contain lowercase English letters only.

#	Points	Restrictions
1	5	$A = \texttt{aaa} \dots, B = \texttt{bbb} \dots$
2	9	A and B contain only 'a' and 'n'
3	10	$n \le 100, q \le 1000$
4	15	$n \le 1000, \ q \le 300000$
5	30	$q \le 100000$
6	31	No further restrictions

Examples

Input	Output
init(3, 1, "aac", "bbc")	4
query(0, 2)	
init(5, 3, "abcde", "bcdyz")	4
query(1, 3)	6
query(0, 2)	1
query(4, 4)	
init(20, 20, "aggccdaloaxgnakfivqd",	11
"ckjdfgdnsczhpdmilxrh")	4
query(2, 9)	4
query(2, 5) query(8, 10)	2
query(8, 10) query(2, 11)	8
query(2, 11) query(3, 4)	8
query(9, 15)	o 4
query(6, 12)	4
query(8, 10)	5
query(8, 10) query(8, 10)	12
query(2, 5)	7
query(2, 3) query(5, 14)	9
query(8, 13)	2
query(5, 11)	10
query(0, 1)	7
query(6, 14)	1
query(0, 5)	4
query(0, 5) query(2, 2)	4 7
query(2, 2) query(0, 3)	14
query(0, 3) query(9, 14)	5
query(3, 14) query(3, 12)	0
query(8, 11)	
query(0, 11)	

Explanations

First example For the interval [0, 2] the valid pairs are (0, 0), (0, 1), (1, 1) and (2, 2). For the first three pairs we take k = 1 which transforms the letters 'a' into letters 'b'. For the last one we take k = 0 which leaves the letter 'c' as it is.

Second example For the interval [1,3] we have the valid pairs (1,1), (1,2) (2,2) and (3,3). For (1,1), (1,2) and (2,2) we choose k = 1 which transforms the letter 'b' into 'c' and the letter 'c' into 'd' respectively. For (3,3) we choose k = 21, because it transforms the letter 'd' into 'y'. Therefore, the answer is 4. For the interval [0,2] every possible pair is valid. For all of them we choose k = 1, which makes the letter 'a' into 'b', the letter 'b' into 'c' and the letter 'c' into 'd' respectively. Therefore, the answer is 6. For the interval [4,4] the only pair that satisfies the statement is (4,4), for which we choose k = 21, which transforms the letter 'e' into 'z'. Therefore, the answer is 1.